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Abstract

The unemployment rate is persistent over the business cycle. However, standard
search models contain little internal propagation and predict that, after shocks, the
unemployment rate quickly converges to its steady state level. I show that duration
dependence in unemployment (the fact that unemployed workers with longer unem-
ployment spells are less likely to find jobs) helps explain the persistence of the unem-
ployment rate. I embed duration dependence in an otherwise standard search model
and show that it significantly increases the persistence of the unemployment rate over
the business cycle, reconciling the model to the data. Intuitively, after recessions, the
composition of the unemployment pool shifts to the long-term unemployed. Because
of duration dependence, the long-term unemployed have lower job finding rates, and
the shift in composition decreases the aggregate job finding rate, slowing recovery.
The magnitude of the effect depends on the extent to which duration dependence is
causal rather than a consequence of worker heterogeneity.
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1 Introduction

In the data, the unemployment rate is persistent over the business cycle, particularly after

recessions as unemployment slowly declines to its previous level. Its persistence presents

a challenge to standard Diamond-Mortensen-Pissarides (henceforth DMP) search models,

which struggle to generate realistic unemployment persistence due to little internal prop-

agation. Rather, DMP models predict that, after shocks, the unemployment rate quickly

snaps back to its steady state level. In this paper, I use a calibrated search model to show

that negative duration dependence can help explain the persistence of the unemployment

rate and, when accounted for in the model, helps to reconcile the model with the data.

Like others (Gorry et al., 2020; Pries, 2004), I show that a notion of worker heterogeneity

can reconcile the facts; in my case, I use heterogeneity in job finding rates that arise from

different lengths of time unemployed.

My model is a standard DMP model except that there are two states of unemployment,

the high state and the low state, where unemployed workers in the low state are less

likely to find a job. Unemployed workers arrive to the low state in two ways. First, if

unemployed workers in the high state do not find a job, they move to the low state with

a fixed probability. Second, when separated from a job, a fraction of newly unemployed

workers begin their unemployment spell in the low state.

Therefore, the model accounts for two reasons why workers with longer unemploy-

ment spells are less likely to find a job. First, if there is “pure” duration dependence, then

a long unemployment spells causally decreases the job finding rate. Since unemployed

workers flow to the low state over their unemployment spell in the model, workers with

longer unemployment spells are more likely to be in the low state and less likely to find a

job. However, if workers are heterogeneous in job finding rates regardless of unemploy-

ment length, workers who are more likely to find a job will find their jobs early on, and

workers with longer unemployment spells will be those who had worse job finding rates

at the start.

In calibration, I target standard moments as well as the shape of the job finding rate
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over unemployment duration curve. Quantitatively, the model is flexible enough that the

decrease in the job finding rate over unemployment duration can be wholly explained by

pure duration dependence, heterogeneity, or a combination of both. In the mixed model,

there is a realistic mix of pure duration dependence and heterogeneity. However, I can

make simple adjustments to the model, and recalibrate models with only pure duration

dependence and only heterogeneity.

The main result is that duration dependence increases the persistence of the unem-

ployment rate over the business cycle. The mechanics behind the result are straightfor-

ward. During a recession, job finding rates decrease, so the composition of the unemploy-

ment pool shifts towards the long-term unemployed. Because of duration dependence,

the long-term unemployed are less likely to find a job. Thus, duration dependence drags

down the job finding rate of the unemployment pool as a whole, and the unemployment

rate recovers slowly. Quantitatively, in the mixed model, the unemployment rate is sig-

nificantly more persistent, but not quite to the level of persistence in the data.

Using my alternative models, I show that the effect is significantly stronger with more

pure duration dependence. In other words, I find weaker aggregate effects if the observed

decline in job finding rates over unemployment duration is entirely due to inherent char-

acteristics of workers. Thus, this paper points out that distinguishing between “pure”

duration dependence and unobserved heterogeneity is of some importance in macroeco-

nomics.

One caveat is that duration dependence slows recovery after productivity shocks but

not after job separation shocks. If job separations suddenly increase, the inflows into

unemployment improve the composition of the unemployment pool since, by definition,

newly unemployed workers are short-term unemployed and more likely to find a job.

Thus, firms post more jobs, which mitigates the effect of the shock. To the extent to which

the COVID-19 recession can be characterized by a job separation shock (Cajner et al.,

2020), the theory may help to explain the relatively fast recovery of the unemployment

rate for 2020-2021.
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Policymakers have recently expressed concern about the aggregate effects of duration

dependence. A 2014 White House report titled “Addressing the Negative Cycle of Long-

Term Unemployment” claims that “the cycle of long-term unemployment hampers the

economy at large, depressing aggregate demand and resulting in the underutilization of

productive resources” (White House, 2014). After the Great Recession, the Congressional

Budget Office stated that duration dependence “currently accounts for about a quarter of

a percentage point of the increase in unemployment during and following the recession”

(Congressional Budget Office, 2012).

The remainder of this paper is as follows. I contextualize the paper within the liter-

ature in Section 2. Section 3 establishes the empirical facts which motivate my analysis.

I describe and calibrate the model in Sections 4 and 5. Section 6 presents my results. I

conclude in Section 7.

2 Related Literature

As is pointed out in Pries (2004) and Shimer (2005), DMP models following Mortensen

and Pissarides (1994) fail to generate realistic persistence of the unemployment rate.1 My

solution is similar to Gorry et al. (2020), which shows that changes in the skill composition

in the labor force over the business cycle will amplify shocks and increase persistence.

Instead of heterogeneity in skill, my theory only requires that workers lose job finding

probability over the course of their unemployment spell. Pries (2004) focuses on the high

risk of job loss for new workers; my focus in on the inverse, or the low job finding rate

for the long-term unemployed. However, both elements generate more persistence in the

unemployment rate.

I also contribute to a strand of literature that relates duration dependence with aggre-

gate labor market dynamics. One message from this strand is that a notion of heterogene-

ity or duration dependence is crucial for understanding long-term unemployment. For

1The same is true in Merz (1995), which combines DMP labor market search with a real business cycle
model.

4



example, Kroft et al. (2016) shows that duration dependence decreased the aggregate job

finding rate during the Great Recession, slowing recession.2 My result is closest to Pis-

sarides (1992), which shows that the loss of skills during unemployment generates more

persistence in unemployment.

Generally, the driving force behind my results is that the composition of the unem-

ployment pool shifts during recessions.3 The same force is explored in Ferraro (2018),

Ravenna and Walsh (2012), and Wiczer (2015), though duration dependence is not a key

mechanism. Other related papers include Ahn and Hamilton (2020) and Hornstein (2012),

which account for duration dependence in analyzing outflows from unemployment to

employment.4

Finally, my results speak to another well-known problem that DMP models struggle

to match business cycle volatility in matching efficiency unless the matching efficiency

multiplier (typically denoted by µ) fluctuates wildly (Barnichon and Figura, 2015; Lu-

bik, 2009). In my model, unemployment composition is an endogenous channel through

which matching efficiency decreases during recessions.

3 Empirical Facts

My analysis is driven by two empirical facts, one macro and one micro. The macro fact

is that the unemployment rate is persistent. The micro fact is that unemployed workers

are less likely to find jobs later in their unemployment spell. In this paper, I show that the

micro fact helps explain the macro fact.

First, unemployment is persistent. As illustrated in Figure 1, unemployment spikes

during recessions, but slowly decreases between recessions. Quantitatively, the autocor-

2During the Great Recession, Elsby et al. (2010) and Aaronson et al. (2010) conjectured that duration
dependence would slow the recovery of the unemployment rate.

3Though I often mention recessions, my analysis is about unemployment persistence over the entire
business cycle, which could in principle include positive shocks. However, my illustrative focus is on
negative shocks. In a model where shocks are only recessionary (Dupraz et al., 2019), an analysis of unem-
ployment persistence is simultaneously an analysis of slow recoveries.

4Also see Jarosch and Pilossoph (2019), which provides a counter-argument that duration dependence
is not relevant in the aggregate.
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Figure 1: Unemployment rate over time
Source: US Bureau of Labor Statistics (BLS). Unemployment rate is quarterly. Gray bars denote NBER
recessions.

relation of the unemployment rate is 0.975 (see Table 4).5

Second, Figure 2 illustrates that the probability of finding a job decreases over the un-

employment spell, especially early on. On average, a worker who has been unemployed

for less than a month has a 50% chance of finding a job, while a worker who has been

unemployed for over eight months has a 20% chance of finding a job.

In the unemployment context, “pure” negative duration dependence refers to the

causal notion that unemployment duration negatively affects an individual’s probability

of finding a job.6 Using a resume audit study, Kroft et al. (2013) find that a job appli-

cant with under one month of unemployment is 45% more likely to receive a callback for

a job interview than an applicant who has been unemployed for eight months with an

otherwise identical resume.7

5The unemployment rate is also asymmetric. For theories behind the asymmetry of the unemployment
rate, see Ferraro (2023, 2018), Dupraz et al. (2019), and Rudanko (2024).

6As is common, I use the terms “negative duration dependence” and “duration dependence” inter-
changeably, though “negative duration dependence” is more precise.

7For more experimental evidence, see Eriksson and Rooth (2014), Farber et al. (2019), and Oberholzer-
Gee (2008).
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Figure 2: Job finding rate by unemployment duration
Source: Author’s calculations using CPS micro data for 1978-2019. The y-intercept is the probability that a
worker finds a job before being unemployed for a full month.

The sources of negative duration dependence are unclear. One hypothesis is that

workers lose skills while unemployed, rendering them less productive upon returning

to the workforce (Ljungqvist and Sargent, 1998; Edin and Gustavsson, 2008). Another

theory is that firms may interpret long duration as a signal of inefficiency and statistically

discriminate against such workers (Blanchard and Diamond, 1994; Lockwood, 1991). And

long unemployment duration may be associated with worker discouragement and lower

search intensity (Faberman and Kudlyak, 2019; Krueger and Mueller, 2011).

In my model, I take productivity to be constant across workers, so explanations of pure

duration dependence which rely upon productivity are incompatible with my frame-

work. One theory that is compatible with my model relates to recall hiring. Over 40%

of unemployed workers who separate into unemployment return to previous employer,

and the probability of being recalled declines sharply over the unemployment spell. In

fact, the rate of exit from unemployment to a different employer is only slightly decreas-

ing over the unemployment spell (Fujita and Moscarini, 2017). Another theory is that

long-term unemployed workers have exhausted the job opportunities in their social net-
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Figure 3: Aggregate job finding rate and mean unemployment duration
Mean unemployment duration source: BLS. Job finding rate source: Author’s calculations using CPS data.
Both series are quarterly. Gray bars denote NBER recessions. The job finding rate is monthly.

work.8

However, Figure 2 does not necessarily imply the existence of pure, or causal, negative

duration dependence. The downward-sloping curve could merely be a result of worker

heterogeneity.9 If job searchers are heterogeneous in job finding rates regardless of unem-

ployment length, workers who are more likely to find a job are also more likely to find

a job earlier in their unemployment spell. Thus, workers with a higher unemployment

duration are more likely to be those with a worse job finding probability at the begin-

ning. My model accounts for both pure duration dependence and heterogeneity, and I

experiment with assigning different levels of blame to the two factors.10

Figure 3 illustrates that the micro fact holds in the aggregate; an increase in mean un-

8In a slightly different story, Calvó-Armengol and Jackson (2004) show social networks contribute to
duration dependence because those within the same social network are more likely to be unemployed at
the same time.

9Such heterogeneity is sometimes referred to as “unobserved heterogeneity.” I avoid the “unobserved”
term in this paper because differences in job finding are the only source of heterogeneity in my model.

10Distinguishing pure state dependence from unobserved heterogeneity is an old puzzle in econometrics
(Heckman, 1991). Some studies suggest that the decrease in job finding rates over unemployment duration
is mostly explained by unobserved heterogeneity (Alvarez et al., 2023; Abbring et al., 2002; Machin and
Manning, 1999). On the other hand, this view is difficult to reconcile with studies which find that observable
differences between workers are not important predictors of unemployment duration (Elsby et al., 2010;
Krueger et al., 2014).
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Figure 4: Job finding rate by unemployment duration over time
Source: Author’s calculations using CPS data. Gray bars denote NBER recessions. Job finding rates are
monthly. All series are smoothed to quarterly.

employment duration is associated with a decrease in the aggregate job finding rate. Also

note that, like the unemployment rate as a whole, the job finding rate is slow to recover

after recessions. Thus, Figure 3 summarizes the mechanism in my model. As the aver-

age unemployment duration increases, duration dependence puts downward pressure

on the aggregate job finding rate, making the job finding rate slower to recover. The slow

recovery of the job finding rate then drives the slow recovery of unemployment.11

The gap in job finding probability by unemployment duration is relatively constant

over the business cycle. As Figure 4 shows, job finding rates for different unemployment

durations move roughly in parallel. In addition to motivating a key assumption of the

model, Figure 4 suggests that the aggregate job finding rate can fluctuate as a result of

changes in the composition of the unemployment pool by unemployment duration.

11Note that I am only referring to unemployment outflows, not inflows. However, there is empirical
support for the idea that recovery is driven more by job finding (outflows) than job separations (inflows).
For the view that all unemployment fluctuations are mostly driven by job finding, see Shimer (2012), Hall
(2005), and Elsby et al. (2009). For the view that separations are important for fluctuations in unemployment
but that recovery is still mostly driven by outflows, see Elsby et al. (2013), Barnichon (2012), Fujita (2011),
Elsby et al. (2010), and Fujita and Ramey (2009).

9



4 Model

I analyze duration dependence using an otherwise-standard DMP search model with un-

employment heterogeneity. There are two states of unemployment, the high state and

the low state, where the only distinguishing feature is that those in the low state are less

likely to find a job than those in the high state. In each period of unemployment, there

is a probability that a unemployed worker in the high state transitions to the low state.

Thus, duration dependence enters the model because workers who have been unem-

ployed longer are more likely to be in the low state and therefore less likely to find a job.

Following negative shocks, the composition of the unemployment pool shifts toward the

low state, decreasing the aggregate job finding rate, and slowing recovery.

4.1 Environment

The model environment closely resembles the standard DMP search model in discrete

time (Pissarides, 2000). There is a measure one of workers and a continuum of firms, both

of which discount the future by discount factor β. Workers and firms are risk neutral and

infinitely lived. The sole market is for labor. Firms post vt vacancies in time t to maximize

expected future profit and use hired labor to produce a single output good, the price of

which is normalized to one. Each employed worker produces At output in exchange for

a wage wt. Workers are either employed or unemployed, and open job vacancies and

unemployed workers match randomly. Jobs are destroyed exogenously with probability

λt, whereupon workers become unemployed.

My model differs from the standard search model by allowing for heterogeneous un-

employment and duration dependence. Unemployed workers are either in the high state

or the low state. The total unemployment rate is ut = uL
t + uH

t , the sum of unemployed

workers in the high state, uH
t , and the low state, uL

t . The employment rate is nt = 1 − ut.

Some workers begin their unemployment spell in the low state; others flow from the

high state to the low state due to pure duration dependence. With probability ζ, newly
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separated workers begin their unemployment spell in the low state. With probability ϕ,

high-state workers who are unable to find a job flow to the low state. Equivalently, one

can say that a ζ fraction of workers will always begin unemployment in the low state, and

the rest of the worker pool can enter the low state of unemployment as a result of pure

duration dependence, but will begin every unemployment spell in the high state. Thus, ζ

generates heterogeneity in job finding rates and ϕ generates duration dependence.

The probability of finding a job in the low state, f L
t , is a constant fraction γ ∈ (0, 1) of

the probability of finding a job in the high state f H
t , f L

t = γ f H
t . I refer to γ as the low state

penalty.

My framework nests the standard DMP model when ζ = ϕ = 0, a benchmark I refer

to as the DMP model. If ζ = ϕ = 0, then all unemployed workers are in the high state.

I simulate the model response to exogenous shocks to productivity, At, and the sepa-

ration rate, λt. Both are given by AR(1) processes in deviation from the steady state,

st+1 − s = ρs (st − s) + εs, εs ∼ N(0, σ2
s )

for s ∈ {A, λ} where ρs is persistence and σs is volatility. In practice, I will feed the model

shocks to one while holding the other constant.

4.2 Laws of Motion

The inflows and outflows of unemployment are summarized by two laws of motion.

Workers flow out of the high state either by finding a job with probability f H
t or, if they

do not find a job, by moving to the low state with probability ϕ. The total number of

workers flowing into unemployment is λtnt, a fraction 1 − ζ of which begin unemploy-

ment in the high state. Combining inflows and outflows, the law of motion for high-state

unemployment is

uH
t+1 =

(
1 − f H

t

)
uH

t − ϕ
(

1 − f H
t

)
uH

t + (1 − ζ) λtnt. (1)
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Workers in the low state of unemployment cannot move to the high state, so workers

in the low state only flow out by finding a job with probability f L
t . The low state receives

inflows from the fraction ζ of workers who lose their job as well as those who flow from

the high state to the low state. The law of motion for low-state unemployment is

uL
t+1 = uL

t

(
1 − f L

t

)
+ ϕ

(
1 − f H

t

)
uH

t + ζλtnt. (2)

4.3 Matching Functions

I use a matching technology which generates a constant gap in job finding probabilities

between the high state and low state, f L
t = γ f H

t , and nests the standard Cobb-Douglas

matching function.12 The following scheme with two Cobb-Douglas-esque matching

functions, one for each unemployment state, is intuitive and satisfies both requirements.

At time t, the number of matches formed between open job vacancies and high-state

unemployed workers is

mH
(

uH
t , uL

t , vt

)
= µ

uH
t

ut

(
uH

t + γuL
t

)α
v1−α

t (3)

where µ is matching efficiency and α is an elasticity parameter. For intuition, contrast

Equation (3) with the standard Cobb-Douglas matching function, m̃ (ut, vt) = µuα
t v1−α

t .

My function includes two new terms. The first, uH
t /ut, represents the portion of the un-

employment pool to which this matching function applies (a necessary element since

vacancies are posted for both worker types). The second, uH
t + γuL

t , replaces ut and rep-

resents the weighted “matchability” of the unemployment pool.

The number of matches between open job vacancies and unemployed workers in the

low state is

mL
(

uH
t , uL

t , vt

)
= γµ

uL
t

ut

(
uH

t + γuL
t

)α
v1−α

t , (4)

the same expression as (3) but scaled down by γ and applied to the uL
t /ut part of the

12The assumption of a constant gap in finding rates is motivated by the data in Figure 4.
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unemployment pool.

Let θt ≡ vt/ut denote labor market tightness and xt ≡ uH
t /ut denote the fraction of

the unemployment pool in the high state. The job finding rate for unemployed workers

in the high state is

f H
t ≡

mH (uH
t , uL

t , vt
)

uH
t

= µ (xt (1 − γ) + γ)α θ1−α
t . (5)

Similarly, the job finding rate for unemployed workers in the low state is

f L
t ≡

mL (uH
t , uL

t , vt
)

uL
t

= γµ (xt (1 − γ) + γ)α θ1−α
t . (6)

These matching functions successfully generate f L
t = γ f H

t .

Unemployment composition ,xt, is the key element that generates persistence beyond

the DMP model. Define the aggregate (or average) job finding rate as

ft ≡ xt f H
t + (1 − xt) f L

t = µ (xt (1 − γ) + γ)α+1 θ1−α
t . (7)

Note that ft is increasing in xt as well as θt.13 If xt is persistent over the business cycle,

then ft will be more persistent. So, if xt decreases during recessions as unemployment

spells become longer, xt will decrease the aggregate job finding rate and slow recovery.

From the firm’s perspective, the probability that an open position is filled by an unem-

ployed worker from the high state is hH
t ≡ mH (uH

t , uL
t , vt

)
/vt, and the probability that

an open position is filled by a worker from the low state is hL
t ≡ mL (uH

t , uL
t , vt

)
/vt. The

aggregate hiring rate is

ht ≡ hL
t + hH

t = µ (xt(1 − γ) + γ)α+1 θ−α
t . (8)

Like the aggregate job finding rate in Equation (7), the aggregate hiring rate is increasing

13In the DMP model, f̃t = µθ1−α
t .
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in xt.14

4.4 Wages

Wages are determined by a Nash bargaining surplus sharing rule. As such, I first present

value functions. For a worker, the value of unemployment in the high state is

UH
t = z + β

[
f H
t Et+1 +

(
1 − f H

t

) (
ϕUL

t+1 + (1 − ϕ)UH
t+1

)]
(9)

where Et is the worker’s value of employment and z is the flow utility of unemployment.

With probability f H
t , the worker finds a job and begins work in the next period; otherwise,

the worker remains unemployed. Conditional on not finding a job, the worker begins the

next period in the low state of unemployment with probability ϕ; otherwise, the worker

remains in the high state.

The value of unemployment in the low state is

UL
t = z + β

[
f L
t Et+1 +

(
1 − f L

t

)
UL

t+1

]
. (10)

An unemployed worker in the low state cannot move to the high state and is less likely

to find a job because f L
t < f H

t .

Next, for the worker, the value of employment is

Et = wt + β
[
(1 − λt) Et+1 + λt

(
ζUL

t+1 + (1 − ζ)UH
t+1

)]
. (11)

The worker earns the wage wt. With probability λt, the worker is separated from their

job; otherwise, the worker remains employed. Upon separation, the worker begins the

unemployment spell in the low state with probability ζ; otherwise, the worker begins

unemployment in the high state.

14In the DMP model, h̃t = µθ−α
t .
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From the firm’s perspective, the value of a filled job is

Jt = A − wt + β [(1 − λt) Jt+1 + λtVt+1] .

where Vt is the value of an open job vacancy. In the current period, the firm earns the

value of the worker’s production minus the wage. With probability 1 − λt, the job stays

intact for another period; with probability λt, the match is destroyed, and the job becomes

an open vacancy. The value of an open job vacancy is

Vt = −κ + β [ht Jt+1 + (1 − ht)Vt+1]

where κ is the cost of posting a vacancy each period.

I assume free entry of firms in the labor market. In equilibrium, profit maximization

requires that the total discounted value of a vacancy equals zero, Vt = 0 for all t. So, in

equilibrium, the previous two equations become

Jt = A − wt + β (1 − λt) Jt+1 (12)

and

κ = βht Jt+1. (13)

Equation (13) (the free entry condition) determines the number of vacancies posted in

equilibrium. Combining Equations (13) and (8), it is clear that unemployment composi-

tion will affect job posting. All else equal, if the unemployment pool has many workers

in the low state (xt is low), fewer jobs will be posted (vt and θt will be low).

Wages are determined by Nash bargaining where the worker has bargaining weight ψ.

Therefore, the worker and firm split the total surplus – worker surplus plus firm surplus

– generated from the match. Firm surplus is the value of a filled job minus the value of a

vacancy, Jt − Vt = Jt; worker surplus is the value of employment, Et, minus the value of

unemployment for that worker.
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However, a worker’s value of unemployment (i.e., their threat level) depends upon

their status in the current period. A worker exists in one of three categories: currently em-

ployed, high-state unemployed, or low-state unemployed. These categories determine a

worker’s value of unemployment and thus their threat level. Since low-state unemployed

workers have a lower value of unemployment than high-state unemployed workers, low-

state workers are more desperate and willing to work for a lower wage.15

Using the value functions above, if a worker is currently employed, their value of

unemployment is the value of losing their job, ζUL
t + (1 − ζ)UH

t . If a worker is high-state

unemployed, their value of remaining unemployed is ϕUL
t + (1 − ϕ)UH

t . And if a worker

is low-state unemployed, their value of remaining unemployed is UL
t .

I assume that all workers are paid the same wage.16 For all workers to earn the same

wage, I must assume that firms cannot discern between workers. (Either worker status is

unobservable for firms or firms are constrained to pay the same wage to all workers.) So,

job vacancies are posted for the unemployment pool as a whole and firms are randomly

matched with workers.

More precisely, I assume that the firm knows the composition of the workforce but

does not know the type of worker with which it is negotiating. Then, I use the Nash

bargaining solution with incomplete information derived in Harsanyi and Selten (1972).

Thus, the firm does know the status of the worker with which it is negotiating, but knows

that the probability that a worker is currently working, unemployed in the high state, or

unemployed in the low state is nt, uH
t , and uL

t , respectively. Writing Et and Jt as functions

15There is empirical evidence which suggests that workers with longer unemployment spells have lower
reservation wages (Krueger and Mueller, 2016) and earn lower wages once they find a job (Schmieder et al.,
2016).

16My results are robust to this assumption. I find that wage bargaining schemes where firms can pay
different types of workers different wages generate very similar predictions.
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of the wage, the wage solves

wt = arg max
ŵt

{( [
Et (ŵt)−

(
ζUL

t + (1 − ζ)UH
t

)]nt

×
[

Et (ŵt)−
(

ϕUL
t + (1 − ϕ)UH

t

)]uH
t
[

Et (ŵt)− UL
t

]uL
t
)ψ

Jt (ŵt)
1−ψ

}
.

Note that the probabilities for worker status (nt, uH
t , and uL

t ) appear as exponents in the

worker’s surplus term. Taking logs and maximizing, the equilibrium wage wt solves

(1 − ψ)
1

Jt(wt)

= ψ

(
nt

Et(wt)−
[
ζUL

t + (1 − ζ)UH
t
] + uH

t
Et(wt)−

[
ϕUL

t + (1 − ϕ)UH
t
] + uL

t
Et(wt)− UL

t

)
.

(14)

Again, the model collapses to DMP with standard Nash bargaining if ζ = ϕ = 0.

5 Calibration

5.1 External Calibration

External parameters choices are listed in in Table 1. The model period is one month. I

set β to 0.9967 in accordance with a risk-free real interest rate of 4%. The flow utility of

unemployment z is set to 0.73 according to the calculations in Mortensen and Nagypal

(2007) and the vacancy creation cost κ is set to 0.3 according to Michaillat (2012). I set α

and ψ equal to 0.6.17 I follow Coles and Moghaddasi Kelishomi (2018) for shock process

parameters {ρA, σA, ρλ, σλ}. A is normalized to 1.

17With α = 0.6, I seek to anchor to the macro standard of 0.5 and acknowledge the larger estimates in
micro literature such as Petrongolo and Pissarides (2001) and Lange and Papageorgiou (2020). Similarly, ψ
is set to 0.6 by combining the macro standard of 0.5 with the larger results in Jäger et al. (2020).
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Table 1: External parameters
Parameter Meaning Value Explanation/source

β Discount factor 0.9967 4% annual risk-free rate
z Flow utility of unemployment 0.73 Mortensen and Nagypal (2007)
κ Vacancy creation cost 0.3 Michaillat (2012)
α Matching function elasticity 0.6 Petrongolo and Pissarides (2001),

Lange and Papageorgiou (2020)
ψ Worker bargaining weight 0.6 Jäger et al. (2020)
A Steady state productivity 1 Normalization

ρA Productivity shock persistence 0.965 Coles and Moghaddasi Kelishomi
(2018)

σA Productivity shock standard devi-
ation

0.007 Coles and Moghaddasi Kelishomi
(2018)

ρλ Separation shock persistence 0.875 Coles and Moghaddasi Kelishomi
(2018)

σλ Separation shock standard devia-
tion

0.042 Coles and Moghaddasi Kelishomi
(2018)

External parameter choices.

5.2 Internal Calibration

I internally calibrate λ, γ, ϕ, ζ, and µ by matching the steady state unemployment rate

u, job finding rate f , and job finding rate as a function unemployment duration f (τ) in

the data. I describe the data used in Appendix A and explicitly list calibration targets in

Appendix B.3.

First, I first calibrate λ according to the steady state relationship

u =
λ

λ + f
(15)

which results in λ = 0.02. I estimate the four remaining parameters using simulated

method of moments.18

The novelty in my calibration strategy is that I target the job finding rate as a function

of unemployment duration, f (τ), as plotted earlier in Figure 2. To do so, I fit a curve to

18For the DMP model, I set µ so that f = µθ1−α where θ is the same as the heterogeneous model; ϕ = ζ =
0 and γ is redundant.
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Figure 5: Fit of job finding rate by unemployment duration
Data is identical to Figure 2. Target fit is the curve which fits the data under the functional form of f (τ)
implied by the model of this paper. Model fit is the resulting f (τ) curve after calibration. The fit looks
identical for model variant. DMP fit refers to the fit of f (τ) in the standard DMP model where ϕ = ζ = 0.

the data for f (τ), then target the three coefficients of the curve. For details, see Appendix

B.1. Figure 5 plots the f (τ) curve and the model fit. Note that the standard DMP model

assumes that the job finding rate is constant across all unemployment durations, relegat-

ing f (τ) to a horizontal line, whereas my model matches captures the downward sloping

job finding rate.

However, if I only target u, f , and f (τ), then ϕ and ζ are jointly identified, but not

separately identified. Recall that it is unclear whether the downward-sloping f (τ) curve

is caused by pure duration dependence (ϕ) or heterogeneity (ζ). The same is true in my

model. In fact, the f (τ) curve can be generated entirely by negative duration dependence,

entirely by heterogeneity, or by infinite combinations of the two. Figure 6 illustrates the

situation. The downward-sloping curve is the locus of (ϕ, ζ) pairs that fit the data equally

well.

I exploit the ambiguity to separate the aggregate effects of duration dependence from

heterogeneity. I consider three versions of the model, two of which are extreme cases. For

the first model, which I call the “pure duration dependence model,” I assume that pure
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Figure 6: Joint identification of duration dependence and unobserved heterogeneity
Each point on the curve is a different calibration. The line plots calibrated values of ζ when restricting ϕ. ζ
represents unobserved heterogeneity and ϕ represents pure duration dependence. The mixed model point
is the calibrated (ϕ, ζ) pair when targeting additional moments from van den Berg and van Ours (1996). It
represents a realistic relationship between ϕ and ζ. The other two points are extreme cases. If ζ = 0, only
pure duration dependence generates the negative relationship between unemployment duration and job
finding rate. If ϕ = 0, only heterogeneity generates the negative relationship.

duration dependence is the only cause of the downward-sloping job finding rate. As such,

I set ζ equal to zero, cutting off heterogeneity as a channel of duration dependence, and

calibrate the remaining parameters. The pure duration dependence model corresponds to

the green circle on the horizontal axis in Figure 6. Then, I assume the opposite; I assume

that pure duration dependence is nonexistent and that the downward-sloping f (τ) curve

is due entirely to heterogeneity. To do so, I set ϕ equal to zero and calibrate the remaining

parameters. The “pure heterogeneity model” corresponds to the purple triangle in Figure

6.

The third model, which I call the “mixed model”, approximates a realistic mix of

pure duration dependence and heterogeneity. I target additional moments estimated in

van den Berg and van Ours (1996), a paper which quantifies the effects of pure duration

dependence and heterogeneity. Appendix B.2 explains how I incorporate the new targets.
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Table 2: Calibrated parameters
Model

Pure duration Pure
Parameter Meaning DMP Mixed dependence heterogeneity

γ Low state penalty 0.34 0.43 0.33
ϕ Transition rate 0.00 0.13 0.29 0.00
ζ Initial low state 0.00 0.31 0.00 0.38
µ Match efficiency 0.40 0.98 0.67 1.04

The mixed model includes moments from van den Berg and van Ours (1996). These mo-
ments are not targeted in the other three models; in these models, either ζ, ϕ, or both are
restricted to zero.

The mixed model corresponds to the red X in Figure 6; both pure duration dependence

and heterogeneity play significant roles.

In the Appendix, I consider one more model which I call the “Hagedorn-Manovkii”

model. It is identical to the mixed model but uses the parameter values for the flow

utility of unemployment, z, and the worker bargaining weight, ψ, from Hagedorn and

Manovskii (2008). These parameter values do not change my persistence results but, as

explained in Hagedorn and Manovskii (2008), they significantly increase unemployment

volatility.

5.3 Calibration Results

Table 2 lists the resulting parameters for all calibrations. Each calibration fits the data well.

See Appendix B.3 for model fit and steady state endogenous variables across calibrations.

First, note that the job finding penalty in the low state is large. In the mixed model, un-

employed workers in the low state are 35% as likely to find a job as unemployed workers

in the high state.

Second, many unemployed workers are in the low state. Given ζ in the mixed model,

workers have a 23% chance of beginning their unemployment spell in the low state, and

given ϕ, those that begin in the high state have a 13% chance of moving to the low state

each period. Compared with the estimated steady state fraction of unemployed workers
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Table 3: Unemployment impulse response function statistics
Pure duration Pure

Statistic DMP Mixed dependence heterogeneity

Peak t 8 13 15 10
Half peak t 31 40 44 37
Half t - peak t 23 27 29 27
Peak 0.00046 0.00046 0.00058 0.00037

Data correspond to unemployment impulse response functions in Figure 7
Panel A. The first two rows show how many time periods transpire after the
shock until the unemployment rate reaches its peak or half-peak. IRFs are
measured in deviations from the steady state.

in the high state, x = 0.43 (see Table 5 in Appendix B.3), we gather that less than a quarter

of workers begin unemployment in the low state, but at a point in time, over half of

unemployed workers are in the low state. In words, most unemployed workers find

jobs quickly, but most of the unemployment pool consists of workers who will probably

not find jobs quickly.19 This paper suggests that the relative size of the latter group has

significant business cycle implications.

6 Results

6.1 Duration Dependence and Unemployment Rate Persistence

My main result is that duration dependence, particularly pure duration dependence, in-

creases the persistence of the unemployment rate over the business cycle. In this section,

I derive my main result by comparing the persistence of the unemployment rate in re-

sponse to productivity shocks using different model variants.20 Figure 7 plots impulse

response functions (IRFs) for different models after a negative productivity shock, and

Table 3 reports statistics associated with the unemployment IRF in Panel A. The four lines

correspond to the four model variants: the mixed calibration with a mix of pure duration

19This notion is empirically compatible with Morchio (2020) which finds that 2/3 of prime-age unem-
ployment is accounted for by 10% of workers.

20The results using productivity shocks are equivalent to those using discount factor (β) shocks.
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Figure 7: Impulse response functions by calibration after negative productivity shock
All impulse responses are measured in deviations from the steady state. DMP refers to the the model
without unemployment heterogeneity. The baseline calibration is a realistic combination of pure duration
dependence and heterogeneity; the pure duration dependence calibration attributes all differences in job
finding to duration dependence; and the pure heterogeneity calibration attributes all differences in job
finding to heterogeneity. Panel B plots the exogenous shock; all other panels plot endogenous responses.
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dependence and heterogeneity, the standard DMP model (ϕ = ζ = 0), the pure duration

dependence model (ζ = 0), and the pure heterogeneity model (ϕ = 0).21

First, contrast the response of the unemployment rate between the mixed model and

the DMP model. Whereas in the DMP model, unemployment peaks 8 months after the

shock, in the mixed model, it does not peak until 15 months after the shock. Furthermore,

the number of months from peak to half-peak is 36 in the mixed model and 30 in the DMP

model, implying that unemployment also declines at a slower rate. Both the later peak

and the slower recovery rate imply more persistence.

The effect is significantly stronger if pure duration dependence, rather than hetero-

geneity, drives the negative relationship between job finding rates and unemployment

duration. In the pure duration dependence model, the unemployment rate peaks later

and the rate of recovery is slower that in the pure heterogeneity model. Also note that the

peak is much higher with pure duration dependence, which suggests that pure duration

dependence contributes to amplification in addition to propagation. The mixed model is

somewhere between the two extremes.

The other panels in Figure 7 illustrate the intuition for why duration dependence in-

creases persistence. Panel B plots he negative productivity shock. λt is fixed; thus, the

inflow rate to unemployment is fixed, so unemployment fluctuations are driven entirely

by the job finding rate, or the rate of outflow from unemployment. Therefore, the size

and shape of the aggregate job finding rate in Panel C is responsible for the size and

shape of the unemployment rate in Panel A. Aggregate job finding, in turn, is a function

of (and increasing in) unemployment composition xt (Panel D) and labor market tight-

ness θt (Panel E). There is little difference in tightness, so the differences between IRFs are

driven by unemployment composition.

After a negative productivity shock, firms post fewer jobs, which decreases tightness

and the aggregate job finding rate. Due to pure duration dependence, those who do not

find work may flow to the low state of unemployment. Since those in the low state find

21Results are computed using Dynare (Adjemian et al., 2011).
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jobs at a lower rate, flows to the low state build over the course of the recession, resulting

in the negative hump shape of xt. Even though θt is recovering at the same speed, the

composition effect drags down the recovery of the aggregate finding rate, and unemploy-

ment recovers more slowly. The effect is strong with more pure duration dependence. So,

duration dependence is more pure, the unemployment rate is more persistent.22

Note that ft mirrors the path of At in the DMP model. Herein lies the reason why the

standard DMP model fails to generate persistence in unemployment. Since vacancies vt

is a jump variable, θt adjusts to At each period according to the free entry condition. So,

θt follows the same path as At, and since the aggregate job finding rate is a function only

of θt, the aggregate job finding rate follows the same path as At as well. The result is that

the finding rate recovers as quickly as the shock.23 My model avoids this result because

ft also a function of xt. In fact, it is clear how ft initially recovers quickly before getting

“caught” by the slow-developing drop in xt

Even without pure duration dependence, unemployment recovers more slowly with

heterogeneity. In the pure heterogeneity model, after an initially positive effect on com-

position, high-state workers find jobs at a faster rate than low-state workers, worsening

the pool and slightly slowing recovery.

Turning to stochastic simulations, Table 4 reports autocorrelations from simulating

the model using a stochastic path for productivity At. In Table 4, the unemployment

rate is significantly more persistent in the mixed model with an autocorrelation of 0.957

compared to 0.930 in the DMP model. The difference is a marked improvement given

that the autocorrelation of unemployment is 0.975 in the data., though the persistence

in the data is still significantly greater. And again, unemployment is more persistent

with more pure duration dependence. In Table 4, the aggregate job finding rate is more

persistent with pure duration dependence, and the greater persistence of the job finding

rate increases the persistence of the unemployment rate. If the unemployment rate is

22For every line except for the case of pure duration dependence, xt increases in the period after the shock.
This has to do with the different levels values of γ, ϕ, and the steady state x across different calibrations.

23Table 8 in the Appendix shows that the correlation between At and ft is 0.999 in the DMP model.
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Table 4: Simulation autocorrelations from stochastic productivity
Model

Pure duration Pure
Data DMP Mixed dependence heterogeneity

AC(ut) 0.975 0.930 0.957 0.965 0.944
AC(θt) 0.969 0.878 0.892 0.904 0.883
AC( ft) 0.980 0.878 0.929 0.948 0.901

First column is data, rest of columns are simulations of different models.
Vacancy data source: JOLTS and Barnichon (2010). All other data: CPS.
All series are quarterly and HP filtered with smoothing parameter 105.

modeled as an AR(1) process, then the half-life of the unemployment rate is 16 months in

the mixed model compared to 9 months in the DMP model.24

I include more thorough IRFs and simulation results in Appendix E and Appendix D,

respectively.

6.2 Separation Shocks

In contrast, duration dependence does not slow unemployment recovery after a recession

if the recession is driven by a separation rate shock, as illustrated by the IRFs in Figure

8. Unlike a productivity shock, a positive separation shock induces a positive composition

effect which offsets the negative effects of the shock.

As Panel A of Figure 8 shows, the separation rate shock triggers a wave of workers

entering unemployment. Since ζ < 0.5, most workers enter the high state of unemploy-

ment upon separation.25 And since, by definition, newly-separated workers are short-

term unemployed, the composition of the unemployment pool quickly jumps toward the

high state in Panel D. The improved composition of the unemployment pool increases

the probability that firms successfully hire workers. So, firms are incentivized to post

more job vacancies, and θt spikes up. Since both xt and θt increase, the aggregate job find-

ing rate increases in Panel B, generating an increase in unemployment outflows which

24Using the autocorrelation coefficient ρ, the half-life is calculated using log(0.5)/ log(ρ) (Gorry et al.,
2020). In the data, the half-life of unemployment is 27 months.

25ζ < 0.5 for all models.
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Figure 8: Impulse response functions after separation rate shock
Impulse response functions following a positive separation rate shock. All impulse responses are measured
in deviations from the steady state. DMP refers to the the model without unemployment heterogeneity.
The baseline calibration is a realistic combination of pure duration dependence and heterogeneity; the pure
duration dependence calibration attributes all differences in job finding to duration dependence; and the
pure heterogeneity calibration attributes all differences in job finding to heterogeneity. Panel B plots the
exogenous shock; all other panels plot endogenous responses.
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offsets the increase in inflows. In short, after a separation rate shock, a positive shift in

composition spurs a job posting spree which mitigates the rise in unemployment.

In the long run, unemployment composition eventually decreases as unemployed

workers shift to the low state. But the effect is small since the shock has mostly subsided.

7 Conclusion

The high persistence of the unemployment rate presents a challenge for the standard

DMP search model. In a standard DMP model, there is little internal propagation, so the

model does not generate persistence of the unemployment rate beyond the persistence

of the shock. In this paper, I embed negative duration dependence into DMP model and

show that accounting for negative duration dependence helps to reconcile the model with

the data.

Unlike standard DMP models in which unemployed workers are homogeneous, my

model includes two states of unemployment, high and low, where workers in the low

state face lower job finding rates. A fraction of all workers are perpetually in the low

state, but unemployed workers can also reach to the low state as result of pure duration

dependence. Thus, the model can accommodate both explanation for why job finding

rates decrease with unemployment duration: pure heterogeneity and duration depen-

dence.

I calibrate the model so that it matches standard data moments as well as the shape

of the job finding rate over unemployment duration. The model is flexible enough that

it can match the same moments for infinite combinations of pure duration dependence

and heterogeneity. I explore three model variants: a realistic mix of pure duration de-

pendence and heterogeneity, and extreme cases with only pure duration dependence and

only heterogeneity.

Intuitively, as job finding rates decrease during recessions, the composition of the un-

employment pool shifts towards the long-term unemployed. As a result of pure duration

dependence, the long-term unemployed are less likely to find jobs. Since the shifting of
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the unemployment pool is a relatively slow process, the aggregate job finding rate recov-

ers more slowly. Crucially, the magnitude of the effect depends on the extent to which the

negative relationship between job finding rates and unemployment duration is driven by

pure duration dependence. Thus, this paper highlights the importance of distinguishing

between pure duration dependence and heterogeneity for macroeconomists.
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Appendix

A Data

To construct the moments used for calibration, I use CPS data for January 1978 - March

2020. Job finding rates are calculated by dividing unemployment to employment transi-

tions over transitions from unemployment back to unemployment or to employment.

Comparing simulation results with the data also requires data for vacancies and pro-

ductivity. For vacancies, I use JOLTS and, for before 2000, the composite help-wanted

index from Barnichon (2010). For productivity, I use the BLS measure of labor productiv-

ity for all workers in the nonfarm business sector.

B Calibration Details

B.1 Targeting f (τ)

I calibrate parameters to match the shape of the job finding rate as a function of unem-

ployment duration, f (τ).

As is described in Appendix C, in the model’s steady state, the probability of finding

a job given unemployment duration τ

f (τ) =


(1 − ζ) f H + ζ f L, τ = 0(

f H − f L
)
(1 − ζ)(1 − ϕ)τ

(
1 − f H)τ

∏τ−1
i=0 (1 − f (τ − i))

+ f L, τ ≥ 1.
(16)

We can write Equation (16) as

f (τ) =


a + c τ = 0

abτ

(
1

1 − f (0)

)(
1

1 − f (1)

)
· · ·
(

1
1 − f (τ − 1)

)
+ c, τ ≥ 1.

(17)
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where

a =
(

f H − f L
)
(1 − ζ), (18)

b = (1 − ϕ)
(

1 − f H
)

, (19)

and

c = f L. (20)

I first estimate the coefficients a, b, and c in the data. The result is the target curve in

Figure 5. As Figure 5 shows, the functional form of Equation (17) fits the data well. I then

target a, b, and c in calibration.26

Equations (18), (19) and (20) are intuitive. First, c is the horizontal asymptote of f (τ);

as an worker’s unemployment duration increases, their job finding probability converges

downward to f L. a + c is the vertical intercept of f (τ), or the job finding probability of a

worker within the month that they were separated from their previous job. So, a + c =

f (0) = (1 − ζ) f H + ζ f L. b determines the speed of convergence.

B.2 Targeting Estimates from van den Berg and van Ours (1996)

van den Berg and van Ours (1996) nonparametrically estimate the relative relative de-

crease in job finding rates from one month of unemployment to the next that is due to

pure duration dependence. Borrowing notation, ητ is the decrease in the job finding rate

for the mass of unemployed workers from month τ − 1 to τ that would occur if initial

heterogeneity in job finding rates had no effect. In my model, removing heterogeneity is

equivalent to setting ζ equal to zero, so this moment translates to

ητ =
f (τ | ζ = 0)

f (τ − 1 | ζ = 0)
. (21)

ητ is estimated for τ = 1, 2, 3 in van den Berg and van Ours (1996), and I target all of them

26Since I am not targeting the data directly but rather an implication of the data, this method is can be
described as indirect inference. Jarosch and Pilossoph (2019) and Kroft et al. (2016) use a similar strategy to
fit f (τ).
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Table 5: Steady state variables across models
Pure duration Pure Hagedorn-

Variable Baseline dependence heterogeneity Manovskii

u 0.062 0.062 0.059 0.062
x 0.36 0.54 0.36 0.36
θ 0.54 0.54 0.53 1.11
w 0.99 0.99 0.99 0.97
f H 0.55 0.43 0.58 0.54
f L 0.18 0.19 0.19 0.18

Steady state variables across model calibrations.

Table 6: Calibration fit across model specifications
Model

Pure duration Pure Hagedorn-
Moment Target Mixed dependence heterogeneity Manovskii

u 0.062 0.062 0.062 0.059 0.062
f 0.31 0.32 0.32 0.33 0.32
f (τ)

a 0.25 0.25 0.25 0.24 0.25
b 0.41 0.40 0.40 0.42 0.40
c 0.20 0.18 0.19 0.19 0.18

η
η1 0.96 0.92 0.92
η2 0.85 0.87 0.87
η3 0.80 0.83 0.83

Simulated moments across model specifications.

in the baseline calibration.

B.3 Additional Calibration Results

Table 5 lists steady state variables and Table 6 describes the model fit across models. Both

tables include the Hagedorn-Manovskii model. In the Hagedorn-Manovskii model, I fol-

low Hagedorn and Manovskii (2008) and set z = 0.955 and η = 0.052. I then recalibrate

the model, including the additional targets for the mixed model from van den Berg and

van Ours (1996). The resulting parameters are listed in Table 7.
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Table 7: Hagedorn-Manovskii calibrated parameters
Parameter Meaning DMP Mixed Hagedorn-Manovskii

γ Low state penalty 0.34 0.13
ϕ Transition rate 0.00 0.13 0.13
ζ Initial low state 0.00 0.31 0.31
µ Match efficiency 0.40 0.98 0.73

Compares Hagedorn-Manovski calibrated parameters with calibrations
from Table 2.

C Deriving f (τ)

Let ut(τ) denote the number of unemployed workers who have been unemployed for

τ continuous periods. Note that ∑τ ut(τ) = ut. Let uH
t (τ) denote the number of un-

employed workers who have been unemployed for τ periods and are in the high state.

Finally, let xt(τ) denote the fraction of high-state unemployed workers among all unem-

ployed workers with τ periods of unemployment, xt(τ) = uH
t (τ)/ut(τ). Terms without

subscripts refer to the steady state.

To derive f (τ), I must first derive x(τ). The number of unemployed workers who

have not yet been unemployed for a full period (τ = 0) equals the number of workers

who were just separated from their jobs. So,

ut(0) = λt(1 − ut), (22)

The number of unemployed workers in the high state with τ = 0 is

uH
t (0) = (1 − ζ)λt(1 − ut). (23)

Equations (22) and (23) imply

xt(0) = 1 − ζ.

The number of unemployed workers who have been unemployed for one period (τ =

1) consists of the worker who were separated in the previous period and did not find a
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job within that period. Therefore,

ut(1) = ut−1(0)(1 − ft−1(0)).

Plugging in Equation (22), we have

ut(1) = λt−1(1 − ut−1)(1 − ft−1(0)). (24)

Similarly, the number of workers in the high state with τ = 1 is

uH
t (1) = uH

t−1(0)
(

1 − f H
t−1(0)

)
(1 − ϕ).

Note that we include (1 − ϕ) to account for workers who flow to the low state. Plugging

in Equation (23), we have

uH
t (1) = (1 − ζ)λt−1(1 − ut−1)

(
1 − f H

t−1(0)
)
(1 − ϕ).

Since the job finding rate in the high state is not a function of unemployment duration,

f H
t (τ) = f H

t for all τ. So, uH
t (1) can be written as

uH
t (1) = (1 − ζ)λt−1(1 − ut−1)

(
1 − f H

t−1

)
(1 − ϕ). (25)

Equations (24) and (25) imply

xt (1) = (1 − ζ)(1 − ϕ)
1 − f H

t−1
1 − ft−1(0)

.

Using the same method for τ = 2, we have

xt(2) = (1 − ζ)(1 − ϕ)2

(
1 − f H

t−2
1 − ft−2(0)

)(
1 − f H

t−1
1 − ft−1(1)

)
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The pattern continues for all τ ≥ 3.

In summary, for τ ≥ 1,

xt(τ) = (1 − ζ)(1 − ϕ)τ

(
1 − f H

t−τ

1 − ft−τ(0)

)(
1 − f H

t−τ+1
1 − ft−τ+1(1)

)
· · ·
(

1 − f H
t−1

1 − ft−1(τ − 1)

)
.

Concisely written, we have

xt (τ) =


1 − ζ, τ = 0

(1 − ζ)(1 − ϕ)τ
τ−1

∏
i=0

1 − f H
t−i

1 − ft−i(τ − i)
, τ ≥ 1.

(26)

In the steady state,

x(τ) =


1 − ζ, τ = 0

(1 − ζ)(1 − ϕ)τ

(
1 − f H)τ

∏τ−1
i=0 (1 − f (τ − i))

, τ ≥ 1.

Note the asymptotic properties of x(τ). Since f H > f (τ) for all τ, x(τ) → 0 as τ → ∞.

In words, at longer unemployment lengths, the unemployment pool becomes dominated

by the low-state workers.

The job finding probability of a worker who has been unemployed for τ periods is

the weighted average for f H
t and f L

t weighted by the probability that the worker is in the

high or low state:

ft(τ) = f H
t xt(τ) + f L

t (1 − xt(τ)) = xt(τ)
(

f H
t − f L

t

)
+ f L

t .

Since x (τ) → 0 as τ → ∞, f (τ) → f L as τ → ∞; as a worker’s unemployment duration

increases, his job finding rate converges to f L
t .
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Plugging in xt(τ) from Equation (26), we have

ft(τ) =


(1 − ζ) f H

t + ζ f L
t , τ = 0(

f H
t − f L

t

)
(1 − ζ)(1 − ϕ)τ

τ−1

∏
i=0

1 − f H
t−i

1 − ft−i(τ − i)
+ f L

t , τ ≥ 1.

In the steady state,

f (τ) =


(1 − ζ) f H + ζ f L, τ = 0(

f H − f L
)
(1 − ζ)(1 − ϕ)τ

(
1 − f H)τ

∏τ−1
i=0 (1 − f (τ − i))

+ f L, τ ≥ 1.
(27)

D Simulation Tables

Table 8 reports simulation statistics comparing the data and simulated models with an

exogenous productivity process. For each, I list the standard deviation, autocorrelation,

and correlations between variables.27 The autocorrelation numbers match those in Table

4.

Neither of the simulations in Table 8 come close to generating the volatility of unem-

ployment in the data (Shimer, 2005). As suggested by Hagedorn and Manovskii (2008),

one way to resolve the puzzle is to use significantly different parameter values for the op-

portunity cost of employment z and the wage bargaining parameter ψ. I follow this logic

in the Hagedorn-Manovskii model. Indeed, using the new parameter values increases

the volatility of unemployment; the persistence results are unaffected.

E Additional Impulse Response Functions

In this section, I add wages, output, and vacancies to the IRFs in Section 6. Table 9 illus-

trates the effects of productivity shocks and Table 10 illustrates the effects of separation

27The correlation between productivity and the unemployment rate is significantly weaker in the data
than the model. This has to do with my time period, 1978-2019, and is pointed out in Hagedorn and
Manovskii (2011).
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Table 8: Simulation statistics from stochastic productivity
Data

ut vt θt ft At

St. dev. 0.198 0.200 0.385 0.143 0.017
Autocorr. 0.975 0.959 0.969 0.980 0.927

Correlation

ut 1 -0.873 -0.944 -0.988 0.242
vt 1 0.979 0.888 -0.207
θt 1 0.946 -0.214
ft 1 -0.275
At 1

DMP model simulation

ut vt θt ft At

St. dev. 0.025 0.049 0.072 0.029 0.020
Autocorr. 0.930 0.798 0.878 0.878 0.877

Correlation

ut 1 -0.831 -0.924 -0.924 -0.923
vt 1 0.980 0.981 0.979
θt 1 1.000 0.998
ft 1 0.999
At 1

Mixed model simulation

ut vt θt ft At

St. dev. 0.028 0.045 0.068 0.031 0.020
Autocorr. 0.957 0.802 0.892 0.929 0.877

Correlation

ut 1 -0.721 -0.889 -0.952 -0.857
vt 1 0.958 0.895 0.972
θt 1 0.984 0.996
ft 1 0.968
At 1

Hagedorn-Manovskii model simulation

ut vt θt ft At

St. dev. 0.151 0.328 0.760 0.208 0.020
Autocorr. 0.961 0.783 0.801 0.943 0.877

Correlation

ut 1 -0.610 -0.464 -0.829 -0.816
vt 1 0.415 0.886 0.878
θt 1 0.469 0.545
ft 1 0.898
At 1

Top panel is data and the rest of the panels are from simulations of model variants.. The top two rows
of each panel list the standard deviation and autocorrelation of each variable. The rest of the panel is
the contemporaneous correlation between two variables. All series are quarterly and HP filtered with
smoothing parameter 105.
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rate shocks.

Figure 9: Complete impulse response functions after negative productivity shock
Impulse response functions following a negative productivity shock. All impulse responses are measured
in deviations from the steady state. Panel A plots the exogenous shock; the other panels plot endogenous
responses. These IRFs build upon the IRFs in Figures 7. Output is defined as yt = Atnt.
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Figure 10: Complete impulse response functions after positive separation rate shock
Impulse response functions following a positive separation rate shock. All impulse responses are measured
in deviations from the steady state. Panel A plots the exogenous shock; the other panels plot endogenous
responses. These IRFs build upon the IRFs in Figure 8. Output is defined as yt = Atnt.
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Elsby, M. W. L., B. Hobijn, and A. Şahin (2013). Unemployment Dynamics in the OECD.

The Review of Economics and Statistics 95(2), 530–548.

Elsby, M. W. L., R. Michaels, and G. Solon (2009). The Ins and Outs of Cyclical Unem-

ployment. American Economic Journal: Macroeconomics 1(1), 84–110.

Eriksson, S. and D.-O. Rooth (2014). Do Employers Use Unemployment as a Sorting

Criterion When Hiring? Evidence from a Field Experiment. The American Economic

Review 104(3), 1014–1039.

Faberman, R. J. and M. Kudlyak (2019). The Intensity of Job Search and Search Duration.

American Economic Journal: Macroeconomics 11(3), 327–357.

Farber, H. S., C. M. Herbst, D. Silverman, and T. von Wachter (2019). Whom Do Employers

Want? The Role of Recent Employment and Unemployment Status and Age. Journal of

Labor Economics 37(2), 323–349.

41



Ferraro, D. (2018). The Asymmetric Cyclical Behavior of the U.S. Labor Market. Review of

Economic Dynamics 30, 145–162.

Ferraro, D. (2023). Fast Rises, Slow Declines: Asymmetric Unemployment Dynamics with

Matching Frictions. Journal of Money, Credit and Banking 55(2-3), 349–378.

Fujita, S. (2011). Dynamics of worker flows and vacancies: evidence from the sign restric-

tion approach. Journal of Applied Econometrics 26(1), 89–121.

Fujita, S. and G. Moscarini (2017). Recall and Unemployment. American Economic Re-

view 107(12), 3875–3916.

Fujita, S. and G. Ramey (2009). The Cyclicality of Separation and Job Finding Rates.

International Economic Review 50(2), 415–430.

Gorry, A., D. Munro, and C. vom Lehn (2020). Experience, skill composition, and the

persistence of unemployment fluctuations. Labour Economics 63, 101793.

Hagedorn, M. and I. Manovskii (2008). The Cyclical Behavior of Equilibrium Unemploy-

ment and Vacancies Revisited. American Economic Review 98(4), 1692–1706.

Hagedorn, M. and I. Manovskii (2011). Productivity and the Labor Market: Comovement

Over the Business Cycle. International Economic Review 52(3), 603–619.

Hall, R. E. (2005). Employment Efficiency and Sticky Wages: Evidence from Flows in the

Labor Market. The Review of Economics and Statistics 87(3), 397–407.

Harsanyi, J. C. and R. Selten (1972). A Generalized Nash Solution for Two-Person Bar-

gaining Games with Incomplete Information. Management Science 18(5), 80–106.

Heckman, J. J. (1991). Identifying the Hand of Past: Distinguishing State Dependence

from Heterogeneity. The American Economic Review 81(2), 75–79.

Hornstein, A. (2012). Accounting for unemployment: the long and short of it. Working

Paper 12-07, Federal Reserve Bank of Richmond.

42



Jarosch, G. and L. Pilossoph (2019). Statistical Discrimination and Duration Dependence

in the Job Finding Rate. The Review of Economic Studies 86(4), 1631–1665.
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